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FORMAL MODELS OF CONTINUITY, DISCONTINUITY, AND PARTIAL

46. 2 Li 1974

DISCONTINUITY FOR BEHAVIORAL DEVELOPMENT

Charles J. Brainerd

Center for Advanced Study in Theoretical Psycholow-University. of Alberta

The meaning of the question, "Is behavioral development continous

or discontinuous or is it both?" is formally explicated in three steps.

First, a preliminary structural definition of behavioral development

involving a certain domain of elementary phenomena ("behavioral events

in living systems") and a certain elementary relation ("precedes in time")

is presented and rationalized. Second, formal models derived from the

continuous connected straight line of classical mathematics are constructed

for each of the following assertions: (1) Behavioral development is

continuous. (2) Behavioral development is discontinuous. (3) Behavioral

development is partially discontinuous. Third, the differences between

tha respective formal models are summarized. It is shown that each of

the three models can be applied to any narrowly defined behavioral content

area whatsoever and that, taken together, the models entail a new empirical

approach to the old question of whether or not behavioral development in

this or that content area is continuous.
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FORMAL MODELS OF CONTINUITY, DISCONTINUITY, AND PARTIAL

DISCONTINUITY FOR BEHAVIORAL DEVELOPMENT

Charles J. Brainerd

Center for Advanced Study in Theoretical Psychology-- University, of Alberta

The purpose of this paper is to provide a purely formal explication

of a question that traditionally has been viewed as fundamental to developmental

theory construction and explanation: Is behavioral development continuous or

discontinuous or is it both? To avoid repetition, this will be termed

"the continuity question" hereafter. Historically, this question has

been one of the most disputed issues in the foundations of developmental

psychology. For example AUSUBEL and SULLIVAN recently have observed

that "Second only to the nature-nurture controversy has been the great

debate over whether development in [sic] a process of gradual quantitative

and continuous change, or whether it is characterized by.abrupt, uneven

and discontinuous changes which are qualitatively different from one

another [1970, p. 98]."

Although the question of whether or not specific domains of phenomena

are continuous has been examined with definite profit in mathematics, the

physical sciences, the biological sciences, a even some areas of psychology

[e.g., BOWER and TRABASSO, 1963; WERTHEIMER, 1972], the continuity

question has proved singularly intractable with reference to behavioral

development. This causes one to wonder why developmental psychology

should he an exception the rule. The most prevalent current opinion

seems to he that, for whatever reasons, the continuity question becomes
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inherenny intractable when it is applied to behavioral dtivelopment

[e.g., cf. AUSUBLL and SULLIVAN, 1970]. There is another explanation

however. It seems very probable that the intractability of the con-

tinuity question stems from the veritable plethora of meanings that have

been assigned to the terms "continuous" and "discontinuous" by develop-

mental psychologists. Here, I am referring to the meanings that have

been assigned to these terms vis-a-vis behavioral development in general,

rather than meanings that have been employed with reference to some

narrowly defined behavioral content area [e.g., KAGAN, 1971]. While

these terms have been assigned rather precise meanings in mathematics

and the physical sciences, vague and sometimes contradictory definitions

characterize the developmental literature. To illustrate, consider

WERNER'S [1957] and AUSUBEL and SULLIVAN'S [1970] repective definitions.

WERNER specifically excludes from his definitions of "continuous" and

"discontinuous" certain notions, such as "quantitative" and "qualitative,"

which AUSUBEL and SULLIVAN incorporate as essential components of their

definitions. PIAGET'S definitions of the same two concepts [e.g., PIAGET,

1956, 1960] constitute yet another distinct position in which obscure

notion: such ,s "equilibration" and "structural change" are viewed as

essential.

In short, there sliems to he airple evidence that Pr: explication of

the molniny, of "contin'iou-" and discontinuous" as the. apply to behavioral

devr,lopment in word! is very much in order. Rather than attempt to

revivw And analyze all that hir, been said about these notions in the

develop,; ratal litPrature, I shall e&ploy a purely forIPA1 mode 6f expli-

cation. ro my mind, tho principal v irturo of such an approach it that

VAI 0 4
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it allows us to establish the basic points of difference and agreement

without the incursion of extraneous meanings. The explication proceeds

in three steps. First, behavioral development is tentatively defined

in terms of two primitive concepts which it presupposes. Because the

two defining concepts are viewed as primitive herein, they are not them-

selves defined in any strict sense. However, certain descriptive assump-

tions are made about each and a rationale for choosing them as defining

attributes of the concept of behavioral development is presented. Second,

three formal models are proposed which define continuity, discontinuity,

and partial discontinuity with reference to the continuous connected

straight line. A developmental interpretation of each model is generated

simply by assigning the primitive concepts that behavioral development

presupposes as interpretations of the variables of each model. Once

the variables are so interpreted, each model becomes an axiomatic definition

of one of the following statements: (1) Behavioral development is

continuous. (2) Behavioral development is discontinuous. (3) Behavioral

devilopwent is partially discontinuous. Third, the key differences

between the models are summarized and possible new approaches to the

empirir.al study of the continuity question are discussed.

M2fore pri.:eedrg, it s'cloult1 be noted that the ..,riter takes no

d priori position concernin9 which of the three formal models to be pro-_

pr,ed providt the best characterization of behavioral development.

Althoujh 1h re can b,2 little doubt that the a priori preferences of most

working developtriental pcychologists would lie with the continuity model

[e.g. , cf. WISEN, 19621, the writer views the validation of the respective

0 0 5
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models in specific behavioral content areas as purely Rmpirical question.

PreliminAuDefinition of Behavioral Development

As is always the case with formal analyses of scientific constructs,

we must begin with a definition of the domain of interest in terms of

certain undefined notions. This is necessitated by the fact that models

of the type we shall consider establish relationships between uninterpreted

symbols, rather than between specific classes of referent phenomena. A

model of this type can be said to be a model of some given domain of

interest (e.g., behavioral development in our case) only if the symbols

have been assigned the undefined notions of that domain as interpretations.

Hence, our first task must be to arrive at some intuitively reasonable

formulation of the rudimentary ideas that "behavioral development" pre-

supposes.

The Definition

I shall characterize behavioral development in terms of a certain

domain of elementary (for psychology) phenomena and a certain relation on

CO that domain. Consider a nonempty set D whose members are symbolized xi, )(29

C,I) x3, ... and a relation T on 0. If each of the [xi, x2, x3 ...] e D is

)"; assigned the interpretation "a behavioral event in a living system" and

the relation T on 0 is assigned the interpretation "precedes in time,"

vj then we shall say that the system [D, 1] comprises a formal definition of

behavioral development. Under these interpretations, all expressions of
_,...

'-' 1 th2 form
J

x.Tx. are read: The behavioral event x. precedes the behavioralor. --1
ow-44

event x.
)

in time, where it is understood that (x1., x.J ) c.. D. D and T are
". ---

the only undefined notions that we shall require to interpret our three

VI 0 0
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models and to explicate the terms "continuous" and "discontinuous" as

they apply to behavioral development.

Although behavioral events in living systems must be left (strictly

speaking) undefined, two further assumptions are made about these elemen-

tary phenomena. First, in view of the fact that developmental psychology

purports to be an empirical rather than a rational discipline, we shall

stipulate that the xl, x2, x3, ... are at least potentially measurable.

Second, we shall stipulate that our knowledge of the meaning of "a behav-

ioral event in a living system," while quite obviously informal, is

sufficiently precise to allow us to employ the notion without blatant

inconsistency.'

To avoid subsequent repetition, we shall stipulate here that the

relation T is a simple ordering relation and that the system [D, 1] is

completely unbounded. Concerning the former point, to say that T is a

simple ordering relation is to say that it is both asymmetrical and

transitive. Thdt is,

(1) for any non,dentical
,

(x.
1

x.) cD, either x.Tx. or x.Tx. but
4 0 0

not both [asymmetry], and

(2) for any nonidentical ( x . , x . x )cD, if x.Tx. and x.Tx then

x.I Tx.
K

also ftransitivtyl.

Concerning the latter point, to say that [0, TJ is completely

unbounded is to say that l) is not known to have either a "first" element

or d "last" element. That is,

(3) there is no xi =:D such that x.Tx. for every other nnnidentical
--I

x. 1) [1 owt-Ir unI)Tinderin7!--6] , and

VI 0 0 7
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(4) there is no x eD such that x
3
Tx for every other nonidentical
-k

ED [upper unboundedness].

Rationale

The undefined notions. I do not believe that there can be any serious

objection to employing the relation "precedes in time" as a defining

attribute of behavioral development. While it must be acknowledged that

no agreement exists on the fine details of how the concept of development

is to be defined vis -a -vis behavior [e.g., compare ANDERSON, 1957; NAGEL,

1957; WERNER, 1957], there is extensive agreement on the following point:

Whatever else it may entail with regard to specific domains of application

(biology, psychology, etc.), development always denotes a time ordered process

in a living system [HARRIS, 1957; WOHLWILL, 1970].

There appear to be two prima facie objections that can be lodged

against using "a behavioral event in a living system" as a defining

attribute of behavioral development. First, although there probably would

be few objections to treating behavioral events as elementary phenomena

in most other branches of psychology, developmental psychologists

traditionally have thought of themselves as studying behavioral changes

within and between generations. Hence, it might reasonably be argued that

eJch of thr? ?Li, x2, x3, ... should be assigned the interpretation "a

be2haviural change in a living system." Although this interpretation seems

intuitiy-ly f!opropriate, it can be vitiated on both logical and empirical

ground-, Logically, th': nntinn "b:2havioral change" is not elementary.

In fact, it is compoun&d from and can he reduced to (i.e., satisfactorily

defiiv'J in terals of ) domin D and the relation T ur.ler their stated
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interpretations. Behavioral changes, at least those studied by develop-

mental psychologists, are inferred differences between behavioral events

measured at different times. The most rudimentary example of a behavioral

change would be an inferred difference between two elementary behavioral

events (perceptual discriminations scores on a personality test, etc.)

measured at different times. Hence, we may define the concept "behavioral

change" as that special subset of the set of all expressions of the form

NTIehose members satisfy the additional requirement that 11 i

Empirically, it usually is deemed essential that the elementary phenomena

of any scientific discipline be directly measured. Although behavioral

events in living systems are satisfactory in this respect, behavioral

changes quite obviouily are not.

The second objection to treating behavioral events in living systems

as the elementary phenomena of behavioral development is that if we accept

the testimony of the biological sciences, behavioral events are neither

irreducible nor unanalyzable. Quite to the contrary, they appear to be

reducible to more basic physiological and experiential events. The

objection, then, is this: If we admit at the outset that behavioral events

are not irreducible in some ultimate sense, then is it not logically

inappropriate to treat them as elementary phenomena in Any: definition? It

turns out that this usage is not logically flawed because it is simply

incorrect to suppose that the inclusion of a certain class of occurrences

as elementary phenomena is a given definition somehow entails that these

occurrenct!; arc irreducible in sowq ultimate sense [cf. RUSSELL, 1948].

Instnad, it is possible to view certain phenomena as elementary for pur-

poses of corle specific formal definition. while simultanew.ly acknowledging

0 009
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that they are characterized by a complex structure. Regardless of

whether the elementary phenomena of a formal definition are or are not

ultimately irreducible, the expressions that result from combining the

symbols that represent these phenomena in formal models will be exactly

the same. Therefore, we may treat behavioral events as elementary

phenomena for the sake of defining behavioral development and simul-

taneously admit that there are more basic levels of analysis. For those

who find this situation somewhat counterintuitive, it should be noted

that a quite analogous situation has existed for some time in theoretical

physics. On the one ham!, space-time loci are viewed as elementary for

purposes of formally defining the concept "matter" while, on the other

hand, space-time loci are definable for other purposes [RUSSELL, 192S,

1948].

Properties of the undefined notions. As was the case for the

relation "precedes in time" itself, there appear to be no serious object-

ions that can be lodged against the assumption that this is a simple ordering

relation. Our common sense conception of this relation implies both

asy:retry and transitivity: For every pair of distinct occurrences A

and B separated by sone temporal interval, if we are given that A occurs

t.*fore 3, then we invariably conclude that the reverse is not true;

for every triplet of distinct events A, B, and C, if we are given that A

occurs befor=.! B and B occurs be fore C, then we invariably conclude that

A occur', b..!fnr,2 C. In addition to our common sense conception, formal

theors of t:Niporal relations (e.g., those of physics) routinely assign

thP pr9vrty of simple ordering to time [RUSSELL, 1903].

;) '!911)
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The complete unboUndedness of [U, T] under the stated interpretations

is less obvious than the simple ordering of T. In fact, it can be argued

that the system has both an upper and a lower bound. This argument turns on

the assumption that behavioral development in any organism has a definite

beginning (conception) and the assumption that it has a definite end (death).

Although these objections may seem well-taken, both reflect ontogenetic

myopia. That is, they implicitly assume that behavioral development is

synonymous with ontogenesis. This assumption is unwarranted. It is widely

conceded that the concept of behavioral development must include both onto-

genesis and phylogenesis [HARRIS, 1957]. Both lower and upper boundedness

are specifically proscribed in modern evolutionary theory for the following

reasons. Lower boundedness may be taken both to imply special creation of

some sort and to imply that a sharp line can be drawn between living and non-

living organic compounds. Upper boundedness entails that evolution either

has ceased or will cease it some future time.

Three Formal Models

We shall consider formal models of continuity, discontinuity, and partial

discontinuity in this section. Before proceeding, however, some historical

remarks about the concept of continuity are in order. Since the time of

Pr:hago-a: 4:id his brot:1;!nicod, ti,e continqous connected straight line L has

b.2.1 accepted as the ellfr)diwent of the concept of continuity [RUSSELL, 1903].

e''

\,

That in both tthematics and the empirical sciences, the assertion

that this or that system is continuous traditionally has been taken to

thlt i. is a representation of that system (i.e., a one-to-one

011
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correspondence can be established between the elements of that system

and the oints of L). Since the discovery of higher-order continua, such

as those .hat characterize the complex numbers and the space-time manifold

of relativity theory, L has also been called the first-order continuum in

in -- cognition of the fact that other continua ultimately reduce to L.

As was the case for behavioral development, L may be formally defined

in terms of a certain domain of elements and a certain relation on that

domain. Consider a nonempty set S whose members are symbolized sl, .12, !3 OOS

and a relation P on S. If each of the [sA, s29 s., ...] eS is assigned

the interpretation "a point on a plane" and the relation P on S is assigned

the interpretation "to the left of," then the system [S, P] is a formal

definition of L. The property of simple ordering is stipulated for P and

the property of complete unboundedness is stipulated for [S, P].

Now, let us consider what it means to have a formal model of continuity.

Consick?r some completely unbounded set of elements S' and a simple ordering

relation P' on S'. Suppose that there is some function f that maps each

and every element of S' with a unique element of S such that the relation

P' is preserved the relation P. We shall denote this mapping f: S' > S.

Because L is our informal model of continuity, we can express continuity,

discontinuity, and partial discontinuity formally in terms of f S' > S

dS f01104';.

(1) Continuity. Butween all pairs of nonidentical points. of L that

are mappl with elements of 5', there are no points of L that are not

mapp'r1 with ulements of S'. In other words, for all pairs of nonidentical

(i, s.j).-S such that
1 J. 1 1

and for all pairs of nonidentical (s;', s,'),:S'
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such that f: ' > si and f: sj' for every s_v:S such that siPst

and s Ps there is Some s ',;S' such that f: s s In short, thek k k

mapping of [S' , P'] onto 1. leaves no gaps on L.

(2) Discontinuity. Between all pairs of nonidentical points of L

that are mapped with elements of S', there is at least one point of L

that is not mapped with any element of S'. In other words, for all paws

of nonidentical (s.1 , s1) e S such that sir's and for all pairs of nonidentical

(s.' , s.-J ') ,S' such that f: s.' s. and f: s '

J'
s. for some sic S such

that s.Ps
-k

and s
k
Ps

j
there is no s

k
scS such that f: s ' s

ke
In short,

the napping of [S', P'] onto L leaves gaps on L between every pair of

nonidentical points on L.

(3) Partial discontinuity. Between some pairs of nonidentical

points on L that are mapped with elements of S', there is at least one

point of L that is not mapped with any element of S'. In other words, for

some pairs of nonidentical (1,, 1.41) ES such that 1.413s4
I

and for some

pairs of nonidentical (14 ', 141) S' such that s4 ' s4 and

s. for some sk e S such that s4Pst and skPli there is no st'ES' such that

f: s
k

' e
21c*

In short, the mapping of [S, Fo] onto L leaves gaps on L

between some pairs of nonidentical points on L.

Formal analyses of L conducted during the nineteenth century by

CANTOR [cf. RUSSELL, 1903, chapters XXXV and XXXVI] and DEDEKIND [1901]

indicatod that for th? system [S', P'] to be a mole.' of L (i.e., for f:

J: S to lc -vie no gaps on L), the system must satisfy six conditions:

(1) alymmetry, (2) transitivity, (3) upper unboundedness, (4) lower

unhoundedn?ss , (5) density, and (6) completeness. Properties 1 through
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al::ady have bean consi&red in conjunction with our formal definition

or be :, Ivioral LL:velopment. Concerning property 5, S' is said to be "dense"

if the fol 1 os;, 09 condition is satisfied: For every pair of nonidentical

(ii s.;') S'such that s4 there is some hie S' such that S. 'P's411

and , 'P's
i

' 'thus, the density property stipulates that "between" every

pair of nonidentical elements of S' there is at least one other nonidentical

elmmt. Concerning property 6,. suppose that we partition [S', P1 into

two subsystes [' , P'] and [N', P'] such that si'P'sji for every

end s
j

. 11;?reafter, any such partitioning of a completely unbounded

systen compo;ed of a nonempty set and a simple ordering relation on that

set will be termed an ordinal partition. The system [S', P1 is said to

be co,opieb if the following condition is satisfied: For every ordinal

p.trt i t :OA or S', if there is no Sim' !V such that si 'P'ss' for every other

nonid,:otical then there may or may not be some s 'c N' such thatA n

n
IP', ' for every other nonidentical s A system is called "incomplete"

f there is always some NI f IV such that sn'P'sji for every other

aj'. N' whenever there is no ht' such that s4 '. In

, (c.),,p1c2Lc,ncs property stinulltel that when the "loaer" segment

r.r an o.!in11 partition of any continuous system contains no "last"

"upirTu .)1,;.-.!nt of that partition does not necessarily contain

C, ndition , 1 thrpufj!) 5 normally are called the

crwl i ti: con t inui ty. Con'Ji t ion 6 normally is called the

Cr;
:lition for coJtinuity; any system that: satisfies this

cfr;.! ti-T! i% qntiNoir..
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Model I: Continuity

Statement of the model. In this model, it is stipulatcd that all six

conditions for continuity hold for the system [S', P']. If we map each

and every element of S' with one and only one point of L in such a manner

that the relation P' on S' is preserved by the relation P on L, then the

outcome of this mapping must be the first of the three outcomes described

above. To illustrate, suppose that there was some leS for which there

was no cieS' such that ski -P 2k. Logically, there are only two

situations which could produce this result. First, there is some pair of

nonidentical (s.1
1

' s.') LS' such that f: s.' 4 s. and f: s.' s. for1
which there is no such that s.'P's ' and s 'P's.' but there is some

-t -t

skES such that liPst and Akpsi. In other words, there is at least one

point on L "between" the two points with which si' and s' are mapped but

there is no corresponding point between s4' and V. Second, for any

ordinal partitioning of [S', P'] into the nonempty subsets H' and 'I',

whenever there is no sm such that s.'P's ' for ali .ther nonidentical
...

5A14.11, there is always some sn'EN' such that laT's: for all other

nonidentical N'. That is, N' always has a "first" element whenever

M' does not have a "last" element. However, we know from condition 5

above that the first situation cannot arise in conjunction with [S'

and ter, knod from condition f above that second situation cannot arise

eiti!er. Htm,...e, the blapping of the elements of S' with the points of L

min lt yinld d one-to-oh,J co.-respondence and, therefore, the system [S's P']

is continlimr

rp-wos,ntltion of Model I. Suppose that wig interpret

.fi 1 5
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S' as D and P' as T. That is, each of the elements of our abstract

domain aria assigned the interpretation "a behavioral event in a living

system" and our abstract simple ordering relation is assigned the

interpretation "precedes in time." Because it already has been assumed

that the properties of simple ordering and unboundedness hold for [D,

independent of its continuity or discontinuity, it is the developmental

representations of conditions 5 and 6 that are the crucial aspects of

this first model. By virtue of condition 5, we stipulate that [D, 1] is

dense. By virtue of condition 6, we stipulate that [D, 1] also is complete.

Hence, if each and every behavioral event of D is mapped with one and

only one point along L in such a manner that the relation "precedes in

time" is preserved by the relation "to the left of", the mapping would

leave no gaps on L.

Numerical_ representation of the model. The system of real numbers

is the appropriate numerical representation of Model I. That is, if S'

is interpreted as the set of all real numbers and P' is interpreted as

the relation "less than," then the system ES', P1 is a model of the real

numbes (or, alternatively, the system of real numbers satisfies the six

conditionl of Vodel 1) . For present purposes we shall define the real

ree-eers inforieally as the union of the set of all rational

n.vel and th' set of all irrational numberswhere a rational number

any n.i.t?r of the for.ri a/n (where n is any number from the set 1, 2,

3, ... anl a is any nw.lor from the set 0, +1, '2, 3 ...) and an

irritiINII nimb,2r is a fiel:ier that cannot be expressed as a quotient of

th-! for:: a/n (P.q.,,f7-3r 17). It is well -known that the axioms of th,!

190ift
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real number system are the six properties of the continuous connected

straight line L discussed earlier [e.g., cf. BEAUMONT and PIERCE, 1963;

FEFERAN, 1964; NIVEN, 1961]. That is, the real number axioms are our

six conditions for continuity under numerical interpretations. In fact,

the real numbers usually are considered the textbook illustration of a

model of L.

Model II: Discontinuity

Statement of the model. First, it is stipulated that conditions 1

through 4 for continuity hold for [S', P'] but that conditions 5 and 6

do not. Contrary to condition 5, it is stipulated that for every si'e S'
MN=

there is some s,' t: S' for which there is no 4s eS' such that s4 ,IPis. '

and s 'P's '. In view of the fact that condition 5 is a necessary pre-

r:quisit for condition 6, condition 6 does not hold for ES', PI either.

(If the system does not satisfy condition 5, then obviously there can

be no ordinal partition of the syscem in which the "lower" subset does not

have a "last" element.)

Suppose that we now map each and every element of S' with one and

only one point of L in such a manner that the relation P' on S' is

preserved by the relation P on L. An informal proof shows that the result

of the mapping f: S' S must be the second of the three outcomes

d.r.r:rib.,..d above. Consifler some arbitrary si'=_S' lnd soml arbitrary

. J . 1 f: S 1.;

(1) By our a=enlment of condition 5, there is some CS' such

tnat if 'P'. thcn there is no such that both !:...4'P'sk' and-!.;

s
.k J

" " 17
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(3) Because condition 5 holds for the system [S, P], there is

some sL eS such that both s4Psk and s,Ps,1. By statement 1, however, there
1..

is no sk' S' such that both 141P'ske and

(4) By f: s4' si and f: s.j: 4 sl, then, there is no sk' cS' such

that f) sk' sk.

(5) Because both si' and si were arbitrary chosen, it follows that

f: S' - S leaves a gap on L between any two nonidentical points (14, 11)

such that sips,.

Devglap!nental representation of Model II. Suppose that we again

interpret S' as D and P' as T. By earlier assumptions, the properties of

simple ordering and unboundedness hold under these interpretations. By the

above amendment of condition 5, the system (0, 1] is not dense. Hence,

it also is not complete. Under these interpretations the preceding informal

proof establishes that if we were to map each and every behavioral event

in D with one and only one point along L in such a manner that "precedes

in time" is preserved by "to the left of," this mapping would leave a gap

on L betwan every pair of nonidentical points (si, such that si is to

the left of si.

Nnmerical representation of Model II. The appropriate numerical

r9.prt2sentation of rodel II is the series 0, ±1, 2, ±3, ... of integers.

That is, if S' is inteproted as the set of all integers and P' is inter-

preted as the relation "less than ," then the system [S', P'] is a wodel

of th series of integers. As was the case for the real numher represent

athn of ;(..).N1 I, the properties of the series of integer) are well-known.

fi !)! prorrtic.; dr! ordering, complete uh:Joundednec,s, rid our

0001S
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anlm,!ndAl version of condition 5 [e.g., cf. BEAUMONT and PIERCE, 1963;

FEFERMAN, 1964; NIVEN, 1961]. In other words, the integer axioms are

our conditions for discontinuity. Hence, if each and every integer is

mode.] with one and only one point along L in such a manner that "less

than" is preserved by "to the left of," the mapping would leave a gap

on L between every pair of nonidentical points (s4, s,) such that si is
1

to the left of

Model III: Partial Discontinuity

Stater...ant of the model. It is stipulated that all the necessary

conditions for continuity (i.e., 1 through 5) hold for the system [S', P']

but that the sufficient condition for continuity does not hold. The sixth

condition is ammended as follows: For any ordinal partitioning of S' into

the nonempty subsets M' and N' such that si'llesis for every s,' ell' and

every s.', N', if there is no s ' cM' such that s.'P's ' for every other

nonidentical s.1 'cril then there is always soma s
fl
'ell' such that s 'P's.'

for every other nonidentical sj'e 4'. Thus, whenever the "lower" subset

of the partition contains no "last" element, the "upper" subset must

contlin a "fir.t" elm2nt. Suppose that we again nap each and every

ele4-:n: of S' with one and only one point along L in such a manner that,

tp.! rz.:lation P' on S' is preserved by the relation P on L. Another informal

prf:9f show.; tnat thfl resqlt of f: S' S must be the third of the three

ryt!:co-(.s d'nrrib,21 earlier:

Supv) ,- that S' is nrdinally partitioned such that the nonempty

suh-Y; m1 NI dr'., r..spectiw2ly, the Iwo." and "upper" subsets of

th-! pJrWion. al ;o that t1' hal no "last" vlex!nt. Finally,
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suppose that M is the nonempty subset of S onto which f: S' > S maps

the elements of fit' and that N is the nonempty subset of S onto which f:

S' S maps the elements of N'.

(1) By our amendment of condition 6, there is some in' E N ' such

that s
n
'P's' for every other nonidentical s.' en'. Hence, there is no

J

s such that s 'P's '

71.

(2) Because f: S' S preserves the relation P' on S', the nonempty

subset N must be the "upper" subset of some ordinal partition of S. By

condition 6, there may or may not be some s
fl

e S such that so Ps, for every

other nonidentical s

(3) Assume that there is no s_ N such that s_Ps4 for every other

nonidentical s Consider the element s of N that the element sn n

is mapped with. By assumption, there must be some si c N such that siPss.

However, by statement 1 , there can be no sj. c N' such that s41P'Srl'.

Cecauie 1: S' y S preserves the relation P' on S', there can be no s ' eN'

such that si is mapped with si by f. Thus, f: S' + S leaves a gap

on L br:twc.3en 14 and in.

N(4)
On

1
the other hind, assume that there is some s_c such that

s_Ps, for all other nonidentical si E. N. Under this assumption the converse

or state.nent 3 holds and f: S' S does not leave a gap on L between 11

dnd

(5) Statement 3 may generalized to all ordinal partitions of

61e vstPm [S, 11 in which the "upper" subset has no "first" element.

Stateruint 4 ray be general i/ed to all ordinal parti Lions of the system

[S, II in wich th- "up;aer" sublet has a "first" elewent.

:; di i; 2 i)
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Developcontal representation of Model III. Suppose we again inter-

pret S' as I) and P' as T. By assumption, conditions 1 through 5 for

continuity hold under these interpretations. By our ammendment of

condition 6, the system [0, 1] is not complete. Under these interpretations,

the preceding informal proof establishes that, if we were to map each and

every behavioral event in D with one and only one point along L in such a

manner that "precedes in time" is preserved by "to the left of," this

mapping would leave a gap on L between some pairs of nonidentical points

(s1, s.) such that 14Psi. The pairs of points between which gaps are left

are those for which: (1) si is a member of the "upper" subset of some

ordinal partition of that has no "first" element; (2) si is mapped with

the "first" element of the "upper" subset of some ordinal partition of

[S', Pl; (3) si is a member of the "lower" subset of the same ordinal

partition of [S, P] and that "lower" subset has no "last" element. On

the other hand, when ki is the "first" element of the "upper" subset of

soa ordidl partition of [S, P] whose "lower" subset, of which si is a

moNbar, has no "last" elepent, the mapping of [S', P1] onto L leaves no

gap betw,_.en si and

repri!sentation of Model III. If S' is interpreted as the

set of ll rational numbers and P' is interpreted as the relation "less

than," thi!n thv systel [11', S'l is a model of tne rational numoers. In

oth:!r :Ht. +, the serl^s of rational timbers is the appropriate inter-

pretation of ,!odel A rational number again is taken to be any nu..1:)r.q.
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that. cdn be expressed in terms of a quotient of the form a/n, where n

is any number from the set 1, 2, 3, ... and a is any number from the set

0, ±1, t2, t3, .... As was the case for the numerical representations

of Models I and II, the properties of the series of rational numbers are

well-known. These properties are simple ordering, complete unboundedness,

density, and incompleteness [e.g., cf. BEAUMONT and PIERCE, 1963; FEFERMAN,

1964; 'LIVEN, 1961]. Mence, if each and every rational number is mapped

with one rnd only one point along L in such a manner that "less than" is

preserved by "to the left of," the mapping will leave gaps between all

pairs of nonidentical points (s IA such that s4Ps, for which Id is a

nuro:Jer of the "upper" subset of some ordinal partition' of [S, P] that has

no "first" element and si is a member of the "lower" subset of that same

ordinal partition where the "lower" subset has no "last" element.

General Discussion

6ccording to the present analysis, then, it is the behavioral versions

of tn:1 properties of density and completeness which differentiate the

three stdte,Aents about behavioral development with which we began. The

stratct that behavioral developr,nt is continuous is reducible to the

contention that, like L, the system [D, T] is both dense and complete.

Th.; statoT.-n`, that 1hAvioral developnt is discontinuous is reducible

to tn.:. r.ont-mtion that, likn the intevrl, th,2 systeo [U, -1] is neither

or cmplr!tr!. Th! 5t!t:;::ent that behavioral development is partially

disc,ii;tinu..,u; (Ind, tiv.wf, partially continuon) is reducible to the

cun?.-n!ion thdt, rdtiondls, the sy:Aeo [0, T] is dense but not

cp.plet.!.

t) 2 2
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It is obvious that these three results apply to narrowly defined

content areas of 1;ehaviural development just as readily as they ripply to

bL,havioral J,!velopment in goreral. For purposes of maximum generality,

asi,1112d the elements of U their broadest possible empirical inter-

pftationN itt our preliminary definition. It will be recalled, however,

tnAt each of oir three formal models were formulated with reference to an

(.1;tr1:_t si,,t2;r1 [S', P'] which was assigned no particular eiTirical inter-

protation. it)refore, if one wishes to restrict the continuity question

tJ so-,, narrowly defined content area such as social development, per-

d,_,v.21opment, lar6uage development, etc., then one has only to

neintrprt!' e1c,..,2nts of 0 in an appropriate manner. In view of the

fat th t t... continuity question traditionally has been posed for

con*,nt areas such as those just noted rather than

f)r as a whole, thy' generalizahility of the present

ari all suci) content areas is d point of considerable

if i cm;

'i nt

C

of h.v. !),.n to provih a

-,tot,,rynL with 0 i (-.h we began

og rf v11 i di ty i t shouid

(At, A, r(;-ryfort!, t i rir corr,..,ponAinrj

fro-, t.hr. v)iht. of

1 -ri lArip

:1 j)

r If. 4 :1 !j in iNJ'
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It is obvious that these three results apply to narrowly defined

content areas of behavioral development just as readily as they apply to

behavioral development in general. For purposes of maximum generality,

we assigned the elements of U their broadest possible empirical inter-

petations in our preliminary definition. It will be recalled, however,

that each of our three formal models were formulated with reference to an

abstract system [S., P.] pdhich was assimedlno particular empirical inter-

pretation. Therefore, if one wishes to restrict the continuity question

to some narrowly defined content area such as social development, per-

ceptual development, language development, etc., then one has only to

reinterpret the elements of U in an appropriate manner. In view of the

fact that the continuity question traditionally has been posed for

restricted behavioral content areas such as those just noted rather than

for behavioral development as a whole, the generalizability of the present

analysis to any and all such content areas is a point of considerable

oraratic significance.

Continuiy_ and Partial Discontinuity

Although the primary aim of this analysis ha: been to provide a

purely explication of the three statements with which we began

rather than to pass judvent on their respective validity, it should be

thlt the throe staterents (and, therefore, their corresponding

formal ,orin11) are not of equal importance from the standpoint of existing

d-Jeloe--ntal thories. The continuity model certainly would have a large

9r;Jd of adh-rontl among conte,Ipurary developmental psychologists. Also,

the -ite-.nr-:.ht that behavioral development is at least partially discontinuowl
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has been forcefully advocated by developmental theorists who subscribe

to the so-called "organismic" viewpoint [e.g., INHELDFR, 1962; PIAGET,

1956, 1960; WERNER, 1948, 1957]. However, the statement that behavioral

developwent is completely discontinuous currently has no identifiable

group of advocates. Hence, although all three of our models certainly

are of formal interest, only Model I and Model II could be termed

"important" by the criterion of existing developmental theories.

A noteworthy point follows from the fact that Model II seems to

be of only academic significance at present: For practical purposes, the

continuity question (regardless of whether it is posed for behavioral

development as a whole or for some narrowly defined content area) reduces

to a difference of opinion over the completeness property. This point is

noteworthy because I think it is somewhat counterintuitive. Intuitively,

it is the fact that one can always find an element between any two given

ek:i;:ents (density) that seems to capture the essence of continuity. The

truth of this contention is. suggested by the fact that the density property

of continua was discovered some 2500 years before Oadekind discovered

thy corpletem!ss property. riven presently available developmental

howTver, the density property is not an important issue at all.

It is by virtue of the completeness property that continuous and partially

discontiuov, stateweots about behavioral dflvc.lopment arc to be distinguished.

In viur of the pre2cerling claims, some brief remarks should be made

emt ived, in terns of our formal molels, one goes about postulating

eith'2r cnntinuity or partial discontinuity in some specific content area

or b'.hd/i0r41 (1.vPinprc!nt. There is only one way to p9stulate continuity:

') 021
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If we stipulate that the domain D contains as many elements as there

are points an L, then the system [D, T] satisfies Model I. Or, more

precisely, Model I is satisfied by [D, 1] if the cardinal numbers of D

and L are identical. In contrast, partial discontinuity can be postulated

in a variety of more or lass equivalent ways. Generally speaking, if the

cardinal number of D is tne same as the cardinal number of Cie set of all

rationals, then [D, T] satisfies Model III. Two overlapping versions of

partial discontinuity have been posited in the writings of organ smi,:ally-

oriented developmental theorists: (1) some behavioral content areas are

characterized by completely continuous development (typical examples:

perception, fine motor skills) while other content areas are characterized

by at least some discontinuous development (typical examples: cfgnition,

language); (2) in some or all behavioral content areas, "phases of

continuity alternate with phases of discontinuity [INHELDER, 1962, p. 24]."

These two forms of partial discontinuity may be said to overlap because

the second constitutes definition of the notion of "at least some

discontinuous development" mentioned io the first. Only the second of the

two form.) seems to characterize AWIER'S developmental theory [cf. WERNER,

1948, 1957]. However, both of these forms of partial discontinuity are

rentioned in PIAGET'S theory [cf. PIAGET, 1956, 1960, 1967; PIAGET and

I:;;IELITR, 1969; 1NHELDER, 1962].

Br!C4U10 the point of departure for the present analysis was an extant

theoretical problem, this paper has been concerned primarily with conceptual

is-eies. It therefore would seem apparent that increased theoretical

9 0 2 5
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precision is the principal benefit to be derived from the analysis.

It turns out, however, that certain aspects of the analysis also bear

on the methodological problem of how the continuity question is to be

researched. Explicitly, certain aspects of the analysis suggest

methodological innovations which might result in a more perspicuous

empirical formulation of the continuity question than those which have

been, common in the developmental literature to date. In closing, I shouit

like to discuss some of these innovations briefly.

As EMMERICH [1964, 1966] and others [e.g., AUSUBEL, 1954] have pointed

out, developmental research on the continuity question traditionally has

been predicated on one or the other of two empirical formulations of the

question: "The first considers behavioral continuity over time and asks

if needs, acts, cognitive operations, etc. are essentially the same at

various periods of devPlopment .... The other approach defines the

continuity issue in terms of individual stability. Here, the essential

question is whether distinctiveness of the individual relative to others

is maintained throughout development ... [EMMERICH, 1964, pp. 311-312]."

In line with EMMERICH'S description, these contrasting approaches may be

termed the nomothetic and idiographic Formulations of the continuity

question, respectively. Unfortunately, both formulations share a,well-

known loqical weakness of which most developmental psychologists are only

too painfully aware, namely, "How much is enough?" The empirical findings

adduced in th-J context of either formulation are principally correlational.

Neither Formulation tends to produce either correlations that approach

E;902
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the square root of the reliability of one's measures (complete continuity)

or in correlations that approach zero (partial discontinuity). Moderate

correlations tend to be the rule. Hence, questions of the form, "How

much stability equals continuity?" and "How much instability equals partial

discontinuity?" invariably crop up. Obviously, answers to such questions

will be fundamentally arbitrary.

The present analysis suggests an empirical formulation of the

continuity question which is both more precise and logically less suspect

than either of the preceding formulations. It will be recalled that each

of the three models developed above has a numerical representation that

corresponds to one of three well-known number systems. In view of the fact

that the axioms of the relevant number system and the formal properties

of behavioral development are isomorphic in each of the three models, it

follows that all and every theorem of the relevant number system is also aen.. .008 ..
theorem of behavioral develooment in each instance. That is, every

statement that is true about the relevant number system for the model also

Hust hold for behavioral development. (In mathematics, systems with

isomorphic axiom sets are termed "categorical." One important property

of categorical systems is that their theorems are the same [e.g., cf.

SfAnER, 1053].) Of course, it is necessary to assir the axioms of eac%

model their developmental interpretations before the number theorems

become fo :111 theorem; of development. In principle, then, the empirical

validity of our three g;tatements about behavioral development may he

differenthlly asses :e'1 for distinct behavioral content areas as follows.

thive thr fell ing theorem set-.: integer theorems, rational

0 2 7
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number theorems, real number theorems. Second, choose the following

subset of theorems from each set: those theorems which serve to

differentiate that set from the other two theorem sets. Third, assign

the axioms of each number system their developmental interpretations.

Fourth and finally, conduct empirical studies of each theorem subset chosen

in step two. The model that is isomorphic with the number system whose

theorem subset receives the most consistent support from the data then

will be taken to be the appropriate model for development in the behavioral

content area under investigation.

the procedure just outlined is far less complicated than it sounds.

Number theory is one of the oldest and most extensively researched branches

of pure mathematics. The important theorems on which the integers, rational

numbers, and real numbers differ are well-known and they may be found in

all standard works on the common number systems or the foundations of

algeb-a [e.g., FEFERMAN, 1964; BEAUMONT and PIERCE, 1963]. Hence, the

most difficult part of the procedure already has been completed. The first

and second steps require nothing more than a careful search of the number

theory literature. Because the third step is simply interpretational, it

is only the final step that remains to be executed whenever one wishes to

apply this procedure to any given behavioral content area.
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Footnotv

'It is pussiblv to state the completeness property in the opposite

manner--i.e., whenever the "upper" segment of an ordinal partition of a

continuous system contains no "first" element, the "lower" segment of that

sari ordinal partition may or may not contain a "last" element. These

two formulations of the completeness property are equivalent. As a matter

of convention, however, mathematicians typically use the formulation

appearing above [LUCHN1S and LUCHINS, 1965].


